Cellulophaga algicola alginate lyase and Pseudomonas aeruginosa Psl glycoside hydrolase inhibit biofilm formation by Pseudomonas aeruginosa CF2843 on three-dimensional aggregates of lung epithelial cells

Cellulophaga algicola 藻酸裂解酶和铜绿假单胞菌 Psl 糖苷水解酶抑制铜绿假单胞菌 CF2843 在肺上皮细胞三维聚集体上形成生物膜

阅读:12
作者:Neetu, Shilpee Pal, Srikrishna Subramanian, T N C Ramya

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen that produces a biofilm containing the polysaccharides, alginate, Psl, and Pel, and causes chronic lung infection in cystic fibrosis patients. Others and we have previously explored the use of alginate lyases in inhibiting P. aeruginosa biofilm formation on plastic and lung epithelial cell monolayers. We now employ a more physiologically representative model system, i.e., three-dimensional aggregates of A549 lung epithelial cells cultured under conditions of microgravity in a rotary cell culture system to mimic the natural lung environment, and a previously isolated clinical strain, Pseudomonas aeruginosa CF2843 that we engineered by transposon-mediated integration to express Green Fluorescent Protein and for which we also report the complete genome sequence. Immunostaining and lectin binding studies indicated that the three-dimensional cell aggregates harbored sialylated and fucosylated epitopes as well as Muc1, Muc5Ac, and β-catenin on their surfaces, suggestive of mucin secretion and the presence of tight junctions, hallmark features of lung epithelial tissue. Using this validated model system with confocal microscopy and viable bacterial counts as readouts, we demonstrated that Cellulophaga algicola alginate lyase and Pseudomonas aeruginosa Psl glycoside hydrolase, but not Pseudomonas aeruginosa Pel glycoside hydrolase, inhibit biofilm formation by Pseudomonas aeruginosa on three-dimensional lung epithelial cell aggregates.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。