Trimethylamine-N-oxide switches from stabilizing nature: A mechanistic outlook through experimental techniques and molecular dynamics simulation

三甲胺-N-氧化物从稳定性质转变:通过实验技术和分子动力学模拟的机械观点

阅读:4
作者:Anjeeta Rani, Abhilash Jayaraj, B Jayaram, Venkatesu Pannuru

Abstract

In adaptation biology of the discovery of the intracellular osmolytes, the osmolytes are found to play a central role in cellular homeostasis and stress response. A number of models using these molecules are now poised to address a wide range of problems in biology. Here, a combination of biophysical measurements and molecular dynamics (MD) simulation method is used to examine the effect of trimethylamine-N-oxide (TMAO) on stem bromelain (BM) structure, stability and function. From the analysis of our results, we found that TMAO destabilizes BM hydrophobic pockets and active site as a result of concerted polar and non-polar interactions which is strongly evidenced by MD simulation carried out for 250 ns. This destabilization is enthalpically favourable at higher concentrations of TMAO while entropically unfavourable. However, to the best of our knowledge, the results constitute first detailed unambiguous proof of destabilizing effect of most commonly addressed TMAO on the interactions governing stability of BM and present plausible mechanism of protein unfolding by TMAO.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。