Structure-activity and immunochemical data provide evidence of developmental- and tissue-specific myosuppressin signaling

结构活性和免疫化学数据提供了发育和组织特异性肌抑制素信号传导的证据

阅读:5
作者:M Dickerson, J McCormick, M Mispelon, K Paisley, R Nichols

Abstract

Myosuppressin peptides dramatically diminish contractions of the gut and heart. Thus, delineating mechanisms involved in myosuppressin signaling may provide insight into peptidergic control of muscle contractility. Drosophila myosuppressin (DMS, TDVDHVFLRFamide) structure-activity relationship (SAR) was investigated to identify an antagonist and explore signaling. Alanyl-substituted, N-terminal truncated, and modified amino acid analogs identified residues and peptide length required for activity. Immunochemistry independently provided insight into myosuppressin mechanisms. DMS decreased gut motility and cardiac contractility dose dependently; the different effective concentrations at half maximal-response were indicative of tissue-specific mechanisms. Replacement of aspartic acid 2 (D2) generated an analog with different developmental- and tissue-specific effects; [A2] DMS mimicked DMS in adult gut (100% inhibition), yet decreased larval gut contractions by only 32% with increased potency in pupal heart (126% inhibition). The DMS active core differed across development and in tissues; adult (DHVFLRFamide) and larval gut (TDVDHVFLRFamide), and adult (VFLRFamide) and pupal heart (VFLRFamide). Substitution of D2 and D4 with a modified amino acid, p-benzoyl-phenylalanine, produced developmental- and tissue-specific antagonists. In the presence of protease inhibitors, DMS and VFLRFamide were more effective in adult gut, but lower or unchanged in pupal heart compared to peptide or analog alone, respectively. DMS-specific antisera stained neurons that innervated the gut or heart. This study describes novel antagonists and data to identify developmental- and tissue-specific mechanisms underlying the pleotropic effects of myosuppressin in muscle physiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。