Small-angle scattering model for efficient characterization of wood nanostructure and moisture behaviour

小角度散射模型可有效表征木材纳米结构和水分行为

阅读:5
作者:Paavo A Penttilä, Lauri Rautkari, Monika Österberg, Ralf Schweins

Abstract

Small-angle scattering methods allow an efficient characterization of the hierarchical structure of wood and other cellulosic materials. However, their full utilization would require an analytical model to fit the experimental data. This contribution presents a small-angle scattering model tailored to the analysis of wood samples. The model is based on infinitely long cylinders packed in a hexagonal array with paracrystalline distortion, adapted to the particular purpose of modelling the packing of cellulose microfibrils in the secondary cell wall of wood. The new model has been validated with small-angle neutron and X-ray scattering data from real wood samples at various moisture contents. The model yields reasonable numerical values for the microfibril diameter (2.1-2.5 nm) and packing distance (4 and 3 nm in wet and dry states, respectively) and comparable results between the two methods. It is particularly applicable to wet wood samples and allows changes in the packing of cellulose microfibrils to be followed as a function of moisture content.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。