Single-molecule analysis reveals changes in the DNA replication program for the POU5F1 locus upon human embryonic stem cell differentiation

单分子分析揭示人类胚胎干细胞分化过程中 POU5F1 基因座 DNA 复制程序的变化

阅读:11
作者:Sherri S Schultz, Sabrina C Desbordes, Zhuo Du, Settapong Kosiyatrakul, Inna Lipchina, Lorenz Studer, Carl L Schildkraut

Abstract

Human embryonic stem cells (hESCs), due to their pluripotent nature, represent a particularly relevant model system to study the relationship between the replication program and differentiation state. Here, we define the basic properties of the replication program in hESCs and compare them to the programs of hESC-derived multipotent cells (neural rosette cells) and primary differentiated cells (microvascular endothelial cells [MECs]). We characterized three genomic loci: two pluripotency regulatory genes, POU5F1 (OCT4) and NANOG, and the IGH locus, a locus that is transcriptionally active specifically in B-lineage cells. We applied a high-resolution approach to capture images of individual replicated DNA molecules. We demonstrate that for the loci studied, several basic properties of replication, including the average speed of replication forks and the average density of initiation sites, were conserved among the cells analyzed. We also demonstrate, for the first time, the presence of initiation zones in hESCs. However, significant differences were evident in other aspects of replication for the DNA segment containing the POU5F1 gene. Specifically, the locations of centers of initiation zones and the direction of replication fork progression through the POU5F1 gene were conserved in two independent hESC lines but were different in hESC-derived multipotent cells and MECs. Thus, our data identify features of the replication program characteristic of hESCs and define specific changes in replication during hESC differentiation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。