Surface functionalization of virus-like particles by direct conjugation using azide-alkyne click chemistry

利用叠氮化物-炔烃点击化学直接结合对病毒样颗粒进行表面功能化

阅读:5
作者:Kedar G Patel, James R Swartz

Abstract

We present a cell-free protein synthesis (CFPS) platform and a one-step, direct conjugation scheme for producing virus-like particle (VLP) assemblies that display multiple ligands including proteins, nucleic acids, and other molecules. Using a global methionine replacement approach, we produced bacteriophage MS2 and bacteriophage Qβ VLPs with surface-exposed methionine analogues (azidohomoalanine and homopropargylglycine) containing azide and alkyne side chains. CFPS enabled the production of VLPs with yields of ~ 300 μg/mL and with 85% incorporation of methionine analogues without requiring a methionine auxotrophic production host. We then directly conjugated azide- and alkyne-containing proteins (including an antibody fragment and the granulocyte-macrophage colony stimulating factor, or GM-CSF), nucleic acids and poly(ethylene glycol) chains to the VLP surface using Cu(I) catalyzed click chemistry. The GM-CSF protein, after conjugation to VLPs, was shown to partially retain its ability to stimulate the proliferation of cells. Conjugation of GM-CSF to VLPs resulted in a 3-5-fold reduction in its bioactivity. The direct attachment scheme facilitated conjugation of three different ligands to the VLPs in a single step, and enabled control of the relative ratios and surface abundance of the attached species. This platform can be used for the production of novel VLP bioconjugates for use as drug delivery vehicles, diagnostics, and vaccines.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。