Tannic Acid Accelerates Cutaneous Wound Healing in Rats Via Activation of the ERK 1/2 Signaling Pathways

单宁酸通过激活 ERK 1/2 信号通路加速大鼠皮肤伤口愈合

阅读:5
作者:Yaqin Chen, Lvbo Tian, Fengyu Yang, Wenzhi Tong, Renyong Jia, Yuanfeng Zou, Lizi Yin, Lixia Li, Changliang He, Xiaoxia Liang, Gang Ye, Cheng Lv, Xu Song, Zhongqiong Yin

Conclusion

These results suggested that TA could accelerate wound healing through modulation of inflammatory cytokines and growth factors and activate Erk 1/2 pathway. In conclusion, TA may be a potential agent in promoting wound healing.

Objective

This study was aimed to evaluate the effect of tannic acid (TA), a natural plant polyphenol astringent, on wound healing in vitro and in vivo, and to elucidate the underlying molecular signaling pathway in the wound healing. Approach: Cutaneous skin wounds were created in rats and then treated until closure with purified TA, serum or tissue samples were collected to test the concentration of factors by enzyme-linked immunosorbent assay (ELISA), and the expression in gene or protein was measured by quantitative real-time polymerase chain reaction or Western blot. We explored the cell-/dose-specific responses of TA (0.1-0.4 μg/mL) on proliferation and gene and protein expression of fibroblast NIH 3T3 cells.

Results

The wounds on rats treated by TA got healed faster than those in the untreated group. The histopathology study showed that TA accelerated re-epithelialization and increase in hair follicles could be detected. The levels of growth factors including basic fibroblast growth factor (bFGF), transforming growth factor-beta, and vascular endothelial growth factor in TA-treated groups were all increased, and the content of interleukin-1 (IL-1) and IL-6 was decreased significantly when compared with that of the untreated group. The NIH 3T3 cells grow faster in 6 h at concentration of 0.1 μg/mL, and the expression of bFGF in gene and protein was increased significantly in the 0.1 μg/mL TA group. Further study revealed that the protein levels of bFGF, extracellular signal regulated kinase (Erk) 1/2, and P-Erk 1/2 in Erk 1/2 pathway were increased after TA treatment. Innovation: The role of TA in wound healing efficacy is unclear; this study, therefore, assesses the effects of TA on wound healing in different periods and the underlying molecular mechanisms.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。