Design of Adjacent Transcriptional Regions to Tune Gene Expression and Facilitate Circuit Construction

设计相邻转录区域以调节基因表达并促进电路构建

阅读:5
作者:Fuqing Wu, Qi Zhang, Xiao Wang

Abstract

Polycistronic architecture is common for synthetic gene circuits, however, it remains unknown how expression of one gene is affected by the presence of other genes/noncoding regions in the operon, termed adjacent transcriptional regions (ATR). Here, we constructed synthetic operons with a reporter gene flanked by different ATRs, and we found that ATRs with high GC content, small size, and low folding energy lead to high gene expression. Based on these results, we built a model of gene expression and generated a metric that takes into account ATRs. We used the metric to design and construct logic gates with low basal expression and high sensitivity and nonlinearity. Furthermore, we rationally designed synthetic 5'ATRs with different GC content and sizes to tune protein expression levels over a 300-fold range and used these to build synthetic toggle switches with varying basal expression and degrees of bistability. Our comprehensive model and gene expression metric could facilitate the future engineering of more complex synthetic gene circuits.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。