Thioredoxin-interacting protein regulates protein disulfide isomerases and endoplasmic reticulum stress

硫氧还蛋白相互作用蛋白调节蛋白质二硫键异构酶和内质网应激

阅读:5
作者:Samuel Lee, Soo Min Kim, James Dotimas, Letitia Li, Edward P Feener, Stephan Baldus, Ronald B Myers, William A Chutkow, Parth Patwari, Jun Yoshioka, Richard T Lee

Abstract

The endoplasmic reticulum (ER) is responsible for protein folding, modification, and trafficking. Accumulation of unfolded or misfolded proteins represents the condition of ER stress and triggers the unfolded protein response (UPR), a key mechanism linking supply of excess nutrients to insulin resistance and type 2 diabetes in obesity. The ER harbors proteins that participate in protein folding including protein disulfide isomerases (PDIs). Changes in PDI activity are associated with protein misfolding and ER stress. Here, we show that thioredoxin-interacting protein (Txnip), a member of the arrestin protein superfamily and one of the most strongly induced proteins in diabetic patients, regulates PDI activity and UPR signaling. We found that Txnip binds to PDIs and increases their enzymatic activity. Genetic deletion of Txnip in cells and mice led to increased protein ubiquitination and splicing of the UPR regulated transcription factor X-box-binding protein 1 (Xbp1s) at baseline as well as under ER stress. Our results reveal Txnip as a novel direct regulator of PDI activity and a feedback mechanism of UPR signaling to decrease ER stress.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。