High fat diet-induced inflammation and oxidative stress are attenuated by N-acetylneuraminic acid in rats

N-乙酰神经氨酰可减轻大鼠高脂饮食引起的炎症和氧化应激

阅读:8
作者:Zhang Yida, Mustapha Umar Imam, Maznah Ismail, Norsharina Ismail, Aini Ideris, Maizaton Atmadini Abdullah0

Background

Serum sialic acid levels are positively correlated with coronary artery disease and inflammation. Although sialic acid is a non-specific marker, it is considered sensitive likely due to its influence in sialylation of glycoprotein structures all over the body. Objectives: We hypothesized that dietary supplementation with N-acetylneuraminic acid (Neu5Ac), a type of sialic acid, will have profound effects on high fat diet- (HFD-) induced inflammation and oxidative stress in view of the widespread incorporation of sialic acid into glycoprotein structures in the body.

Conclusions

Based on the present results, we surmised that Neu5Ac can prevent HFD-induced inflammation and oxidative stress, and may in fact be useful in the prevention of hyperlipidemia-associated inflammation and oxidative stress. However, the translational implications of these findings can only be determined after long-term effects are established. Hence, the use of Neu5Ac on obesity-related diseases requires additional attention.

Methods

HFD-fed rats with or without simvastatin or Neu5Ac (50 and 400 mg/kg/day) were followed up for 12 weeks. Lipid profiles, and markers of inflammation (C-reactive protein, interleukin-6, and tumor necrosis factor alpha), insulin resistance (serum insulin and adiponectin, oral glucose tolerance test and homeostatic model of insulin resistance) and oxidative stress (total antioxidant status and thiobarbituric acid reactive species) in the serum and liver were determined, while mRNA levels of hepatic antioxidant and inflammation genes were also quantified. Serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, urea, creatinine and uric acid were also assessed.

Results

HFD feeding caused hyperlipidemia and insulin resistance, and worsened liver and kidney functions. HFD feeding also potentiated inflammation and oxidative stress, partly through modulation of hepatic gene expression, while Neu5Ac especially at higher doses and simvastatin attenuated HFD-induced changes, although Neu5Ac showed better outcomes. Conclusions: Based on the present results, we surmised that Neu5Ac can prevent HFD-induced inflammation and oxidative stress, and may in fact be useful in the prevention of hyperlipidemia-associated inflammation and oxidative stress. However, the translational implications of these findings can only be determined after long-term effects are established. Hence, the use of Neu5Ac on obesity-related diseases requires additional attention.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。