SARS-CoV-2 receptor-binding domain deep mutational AlphaFold2 structures

SARS-CoV-2 受体结合域深度突变 AlphaFold2 结构

阅读:7
作者:Oz Kilim, Anikó Mentes, Balázs Pál, István Csabai, Ákos Gellért

Abstract

Leveraging recent advances in computational modeling of proteins with AlphaFold2 (AF2) we provide a complete curated data set of all single mutations from each of the 7 main SARS-CoV-2 lineages spike protein receptor binding domain (RBD) resulting in 3819X7 = 26733 PDB structures. We visualize the generated structures and show that AF2 pLDDT values are correlated with state-of-the-art disorder approximations, implying some internal protein dynamics are also captured by the model. Joint increasing mutational coverage of both structural and phenotype data coupled with advances in machine learning can be leveraged to accelerate virology research, specifically future variant prediction. We hope this data release can offer assistance into further understanding of the local and global mutational landscape of SARS-CoV-2 as well as provide insight into the biological understanding that 3D structure acts as a bridge between protein genotype and phenotype.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。