Phase separation-deficient TDP43 remains functional in splicing

相分离缺陷的TDP43在剪接中仍然发挥功能

阅读:5
作者:Hermann Broder Schmidt, Ariana Barreau, Rajat Rohatgi

Abstract

Intrinsically disordered regions (IDRs) are often fast-evolving protein domains of low sequence complexity that can drive phase transitions and are commonly found in many proteins associated with neurodegenerative diseases, including the RNA processing factor TDP43. Yet, how phase separation contributes to the physiological functions of TDP43 in cells remains enigmatic. Here, we combine systematic mutagenesis guided by evolutionary sequence analysis with a live-cell reporter assay of TDP43 phase dynamics to identify regularly-spaced hydrophobic motifs separated by flexible, hydrophilic segments in the IDR as a key determinant of TDP43 phase properties. This heuristic framework allows customization of the material properties of TDP43 condensates to determine effects on splicing function. Remarkably, even a mutant that fails to phase-separate at physiological concentrations can still efficiently mediate the splicing of a quantitative, single-cell splicing reporter and endogenous targets. This suggests that the ability of TDP43 to phase-separate is not essential for its splicing function.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。