Quinpirole Increases Melatonin-Augmented Pentobarbital Sleep via Cortical ERK, p38 MAPK, and PKC in Mice

喹吡罗通过小鼠皮质 ERK、p38 MAPK 和 PKC 增加褪黑素增强的戊巴比妥睡眠

阅读:5
作者:Sa-Ik Hong, Seung-Hwan Kwon, Ji-Young Hwang, Shi-Xun Ma, Jee-Yeon Seo, Yong-Hyun Ko, Hyoung-Chun Kim, Seok-Yong Lee, Choon-Gon Jang

Abstract

Sleep, which is an essential part of human life, is modulated by neurotransmitter systems, including gamma-aminobutyric acid (GABA) and dopamine signaling. However, the mechanisms that initiate and maintain sleep remain obscure. In this study, we investigated the relationship between melatonin (MT) and dopamine D2-like receptor signaling in pentobarbital-induced sleep and the intracellular mechanisms of sleep maintenance in the cerebral cortex. In mice, pentobarbital-induced sleep was augmented by intraperitoneal administration of 30 mg/kg MT. To investigate the relationship between MT and D2-like receptors, we administered quinpirole, a D2-like receptor agonist, to MT- and pentobarbital-treated mice. Quinpirole (1 mg/kg, i.p.) increased the duration of MT-augmented sleep in mice. In addition, locomotor activity analysis showed that neither MT nor quinpirole produced sedative effects when administered alone. In order to understand the mechanisms underlying quinpirole-augmented sleep, we measured protein levels of mitogen-activated protein kinases (MAPKs) and cortical protein kinases related to MT signaling. Treatment with quinpirole or MT activated extracellular-signal-regulated kinase 1 and 2 (ERK1/2), p38 MAPK, and protein kinase C (PKC) in the cerebral cortex, while protein kinase A (PKA) activation was not altered significantl. Taken together, our results show that quinpirole increases the duration of MT-augmented sleep through ERK1/2, p38 MAPK, and PKC signaling. These findingssuggest that modulation of D2-like receptors might enhance the effect of MT on sleep.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。