Biochemical properties, expression profiles, and tissue localization of orthologous acetylcholinesterase-2 in the mosquito, Anopheles gambiae

冈比亚按蚊直系同源乙酰胆碱酯酶-2 的生化特性、表达谱和组织定位

阅读:5
作者:Picheng Zhao, Yang Wang, Haobo Jiang

Abstract

Acetylcholinesterases (AChEs) catalyze the hydrolysis of acetylcholine, a neurotransmitter for cholinergic neurotransmission in animals. Most insects studied so far possess two AChE genes: ace-1 paralogous and ace-2 orthologous to Drosophila melanogaster ace. We characterized the catalytic domain of Anopheles gambiae AChE1 in a previous study (Jiang et al., 2009) and report here biochemical properties of A. gambiae AChE2 expressed in Sf9 cells. An unknown protease in the expression system cleaved the recombinant AChE2 next to Arg(110), yielding two non-covalently associated polypeptides. A mixture of the intact and cleaved AChE2 had a specific activity of 72.3 U/mg, much lower than that of A. gambiae AChE1 (523 U/mg). The order of V(max)/K(M) values for the model substrates was acetylthiocholine > propionylthiocholine ≈ acetyl-(β-methyl)thiocholine > butyrylthiocholine. The IC(50)'s for eserine, carbaryl, BW284C51, paraoxon and malaoxon were 1.32, 13.6, 26.8, 192 and 294 nM, respectively. A. gambiae AChE2 bound eserine and carbaryl stronger than paraoxon and malaoxon, whereas eserine and malaoxon modified the active site Ser(232) faster than carbaryl or paraoxon did. Consequently, the k(i)'s were 1.173, 0.245, 0.029 and 0.018 μM(-1)min(-1) for eserine, carbaryl, paraoxon and malaoxon, respectively. Quantitative polymerase chain reactions showed a similar pattern of ace-1 and ace-2 expression. Their mRNAs were abundant in early embryos, greatly decreased in late embryos, larvae, pupae, and pharate adult, and became abundant again in adults. Both transcripts were higher in head and abdomen than thorax of adults and higher in male than female mosquitoes. Transcript levels of ace-1 were 1.9- to 361.8-fold higher than those of ace-2, depending on developmental stages and body parts. Cross-reacting polyclonal antibodies detected AChEs in adult brains, thoracic ganglia, and genital/rectal area. Activity assays, immunoblotting, and tandem mass spectrometric analysis indicated that A. gambiae AChE1 is responsible for most of acetylthiocholine hydrolysis in the head extracts. Taken together, these data indicate that A. gambiae AChE2 may play a less significant role than AChE1 does in the mosquito nervous system.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。