Density gradient centrifugation before or after magnetic-activated cell sorting: which technique is more useful for clinical sperm selection?

磁激活细胞分选之前或之后的密度梯度离心:哪种技术对临床精子选择更有用?

阅读:6
作者:M Tavalaee, M R Deemeh, M Arbabian, M H Nasr-Esfahani

Conclusion

Based on these results, we propose MACS-DGC rather than DGC-MACS to be implemented in clinical settings.

Methods

Semen samples from fifteen infertile men were divided into three separate fractions: control, DGC, and MACS. To carry out DGC-MACS, DGC samples were further divided into two fractions and MACS was carried on the second fractions. Similarly to carry out MACS-DGC, the MACS samples were further divided into two fractions and DGC was carried on the second fractions. Percentages of sperm with normal morphology, DNA fragmentation, protamine deficiency, EPS and caspase-3 activity were determined in each fraction.

Purpose

Although, at present, the selection of sperm prior to ICSI is based on motility and morphology, undetectable anomalies, and more importantly damaged DNA are overlooked. In this regard, novel sperm selection procedures have gained much interest. For instance, sperm has been selected by Magnetic-Activated Cell Sorting (MACS) based on early apoptotic marker, the externalization of phosphatidylserine (EPS). Review of the literature has revealed that the efficiency of this technique has been mainly evaluated post Density Gradient Centrifugation (DGC). Therefore, there is a need to prove the efficiency of this technique independent of DGC. In addition, considering the fact that DGC induces EPS due to capacitation and acrosome reaction, therefore, the role of MACS before DGC(MACS-DGC) and MACS after DGC (DGC-MACS) should be assessed.

Results

DGC is more efficient than MACS in separating intact sperm only in terms of normal morphology, DNA and chromatin integrity but not for active caspase. However, a combination of these procedures was more efficient than a single procedure to separate intact sperm for the aforementioned parameters. Comparison of the combined procedures showed only higher efficiency to separate active caspase in the MACS-DGC group.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。