STEAP4 with copper reductase activity suppresses tumorigenesis by regulating the cell cycle in hepatocellular carcinoma cells

具有铜还原酶活性的STEAP4通过调节肝细胞癌细胞的细胞周期来抑制肿瘤发生

阅读:10
作者:Ting Yang #, Minhong Zou #, Yujie Xie, Yong Zhang, Kun Wang, Shihai Jiang, Qiong Zou

Background

Abnormal expression of six-transmembrane epithelial antigen of prostate 4 (STEAP4) has been implicated in the carcinogenesis of hepatocellular carcinoma (HCC). However, the biological role and regulatory mechanisms of STEAP4 in HCC remain unclear.

Conclusions

Our results lay a foundation for further study of the cell cycle regulatory role of STEAP4 with Cu2+ reductase activity in HCC, indicating that STEAP4 may be a promising therapeutic target for HCC.

Results

Here, we analyzed STEAP4 expression levels and differentially expressed genes (DEGs) between STEAP4 high- and low-expression groups using multiple databases. Proliferation assays, 5-ethynyl-2'-deoxyuridine (EdU) assays, propidium iodide (PI) flow cytometry, and colony formation assays were conducted to assess the effects of STEAP4 on HCC cell proliferation, cell cycle progression, and clonogenic capacity. STEAP4 was downregulated in HCC tumor tissues, with lower expression associated with poorer overall survival (OS) and disease-free survival (DFS) in patients. Functional network analysis suggested that STEAP4 regulates cell cycle signaling, with tumor sections showing a negative correlation between STEAP4 and cell cycle proteins. Overexpression of STEAP4, combined with non-cytotoxic copper exposure in the HepG2 cell line, reduced proliferation and clonogenicity, induced cell cycle arrest, and downregulated the mRNA and protein levels of cell cycle-regulating genes. A predictive model based on STEAP4 and cell cycle gene demonstrated prognostic value in HCC patients. Conclusions: Our results lay a foundation for further study of the cell cycle regulatory role of STEAP4 with Cu2+ reductase activity in HCC, indicating that STEAP4 may be a promising therapeutic target for HCC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。