Conclusions
Melatonin suppressed obesity and insulin resistance resulting from the HFD by enhancing BAT activity and energy expenditure, and these effects were dependent on FGF21.
Methods
Male C57BL/6 J mice received a high-fat diet (HFD) or normal chow, accompanied by intraperitoneal injection of 20 mg/kg melatonin for 12 weeks. FGF21-/- mice consumed an HFD with or without melatonin for 8 weeks.
Results
Melatonin attenuated weight gain, insulin resistance, adipocyte hypertrophy, inflammation, and hepatic steatosis induced by the HFD and increased energy expenditure. Furthermore, melatonin improved cold tolerance by increasing BAT uncoupling protein 1 (UCP1) expression and producing heat. Notably, melatonin resulted in a shift in energy metabolism favouring the utilization of fat, and it increased FGF21 in circulating and metabolic tissues and skeletal muscle phosphorylation of AMP-activated protein kinase. However, melatonin did not protect against obesity, insulin resistance, and energy expenditure in HFD-fed FGF21-/- mice. Conclusions: Melatonin suppressed obesity and insulin resistance resulting from the HFD by enhancing BAT activity and energy expenditure, and these effects were dependent on FGF21.
