CD206+ macrophages are relevant non-invasive imaging biomarkers and therapeutic targets in experimental lung fibrosis

CD206+ 巨噬细胞是实验性肺纤维化中相关的非侵入性成像生物标志物和治疗靶点

阅读:20
作者:Lenny Pommerolle #, Guillaume Beltramo #, Leo Biziorek, Marin Truchi, Alexandre Magno Maneschy Dias, Lucile Dondaine, Julie Tanguy, Nicolas Pernet, Victor Goncalves, Alexanne Bouchard, Marie Monterrat, Grégoire Savary, Nicolas Pottier, Kjetil Ask, Martin R J Kolb, Bernard Mari, Carmen Garrido, Bertr

Background

Interstitial lung diseases (ILDs) include a large number of diseases associated with progressive pulmonary fibrosis (PPF), including idiopathic pulmonary fibrosis (IPF). Despite the rarity of each of the fibrotic ILDs individually, they cumulatively affect a considerable number of patients. PPF is characterised by an excessive collagen deposition leading to functional decline. Objectives: Therapeutic options are limited to nintedanib and pirfenidone which are only able to reduce fibrosis progression. CD206-expressing M2 macrophages are involved in fibrosis progression, and whether they may be relevant therapeutic targets or biomarkers remains an open question.

Conclusions

These findings indicate that M2 macrophages may be relevant theranostic targets for personalised medicine for patients with PPF.

Results

In our study, CD206+ lung macrophages were monitored in bleomycin-induced lung fibrosis in mice by combining flow cytometry, scRNAseq and in vivo molecular imaging using a single photon emission computed tomography (SPECT) radiopharmaceutical, 99mTc-tilmanocept. The antifibrotic effect of the inhibition of M2 macrophage polarisation with a JAK inhibitor, tofacitinib, was assessed in vivo. We demonstrate that CD206-targeted in vivo SPECT imaging with 99mTc-tilmanocept was able to accurately detect and quantify the increase in CD206+ macrophages from early to advanced stages of experimental fibrosis and ex vivo in lung biopsies from patients with IPF. CD206-targeted imaging also specifically detected a decrease in CD206+ lung macrophages on nintedanib and tofacitinib treatment. Importantly, early in vivo imaging of CD206+ macrophages allowed the prediction of experimental lung fibrosis progression as well as nintedanib and tofacitinib efficacy. Conclusions: These findings indicate that M2 macrophages may be relevant theranostic targets for personalised medicine for patients with PPF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。