Physical and chemical descriptors for predicting interfacial thermal resistance

用于预测界面热阻的物理和化学描述符

阅读:5
作者:Yen-Ju Wu, Tianzhuo Zhan, Zhufeng Hou, Lei Fang, Yibin Xu

Abstract

Heat transfer at interfaces plays a critical role in material design and device performance. Higher interfacial thermal resistances (ITRs) affect the device efficiency and increase the energy consumption. Conversely, higher ITRs can enhance the figure of merit of thermoelectric materials by achieving ultra-low thermal conductivity via nanostructuring. This study proposes a dataset of descriptors for predicting the ITRs. The dataset includes two parts: one part consists of ITRs data collected from 87 experimental papers and the other part consists of the descriptors of 289 materials, which can construct over 80,000 pair-material systems for ITRs prediction. The former part is composed of over 1300 data points of metal/nonmetal, nonmetal/nonmetal, and metal/metal interfaces. The latter part consists of physical and chemical properties that are highly correlated to the ITRs. The synthesis method of the materials and the thermal measurement technique are also recorded in the dataset for further analyses. These datasets can be applied not only to ITRs predictions but also to thermal-property predictions or heat transfer on various material systems.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。