Physical and chemical descriptors for predicting interfacial thermal resistance

用于预测界面热阻的物理和化学描述符

阅读:12
作者:Yen-Ju Wu, Tianzhuo Zhan, Zhufeng Hou, Lei Fang, Yibin Xu

Abstract

Heat transfer at interfaces plays a critical role in material design and device performance. Higher interfacial thermal resistances (ITRs) affect the device efficiency and increase the energy consumption. Conversely, higher ITRs can enhance the figure of merit of thermoelectric materials by achieving ultra-low thermal conductivity via nanostructuring. This study proposes a dataset of descriptors for predicting the ITRs. The dataset includes two parts: one part consists of ITRs data collected from 87 experimental papers and the other part consists of the descriptors of 289 materials, which can construct over 80,000 pair-material systems for ITRs prediction. The former part is composed of over 1300 data points of metal/nonmetal, nonmetal/nonmetal, and metal/metal interfaces. The latter part consists of physical and chemical properties that are highly correlated to the ITRs. The synthesis method of the materials and the thermal measurement technique are also recorded in the dataset for further analyses. These datasets can be applied not only to ITRs predictions but also to thermal-property predictions or heat transfer on various material systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。