Integrative analysis of deep sequencing data identifies estrogen receptor early response genes and links ATAD3B to poor survival in breast cancer

深度测序数据的综合分析确定了雌激素受体早期反应基因,并将 ATAD3B 与乳腺癌生存率低联系起来

阅读:5
作者:Kristian Ovaska, Filomena Matarese, Korbinian Grote, Iryna Charapitsa, Alejandra Cervera, Chengyu Liu, George Reid, Martin Seifert, Hendrik G Stunnenberg, Sampsa Hautaniemi

Abstract

Identification of responsive genes to an extra-cellular cue enables characterization of pathophysiologically crucial biological processes. Deep sequencing technologies provide a powerful means to identify responsive genes, which creates a need for computational methods able to analyze dynamic and multi-level deep sequencing data. To answer this need we introduce here a data-driven algorithm, SPINLONG, which is designed to search for genes that match the user-defined hypotheses or models. SPINLONG is applicable to various experimental setups measuring several molecular markers in parallel. To demonstrate the SPINLONG approach, we analyzed ChIP-seq data reporting PolII, estrogen receptor α (ERα), H3K4me3 and H2A.Z occupancy at five time points in the MCF-7 breast cancer cell line after estradiol stimulus. We obtained 777 ERa early responsive genes and compared the biological functions of the genes having ERα binding within 20 kb of the transcription start site (TSS) to genes without such binding site. Our results show that the non-genomic action of ERα via the MAPK pathway, instead of direct ERa binding, may be responsible for early cell responses to ERα activation. Our results also indicate that the ERα responsive genes triggered by the genomic pathway are transcribed faster than those without ERα binding sites. The survival analysis of the 777 ERα responsive genes with 150 primary breast cancer tumors and in two independent validation cohorts indicated the ATAD3B gene, which does not have ERα binding site within 20 kb of its TSS, to be significantly associated with poor patient survival.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。