Stable isotope labeling confirms mixotrophic nature of streamer biofilm communities at alkaline hot springs

稳定同位素标记证实了碱性温泉中流光生物膜群落的混合营养性质

阅读:5
作者:Florence Schubotz, Lindsay E Hays, D'Arcy R Meyer-Dombard, Aimee Gillespie, Everett L Shock, Roger E Summons

Abstract

Streamer biofilm communities (SBC) are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75-88°C) SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae and Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and "Bison Pool," using various (13)C-labeled substrates (bicarbonate, formate, acetate, and glucose) to determine the relative uptake of these different carbon sources. Highest (13)C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus, and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. (13)C-glucose showed a similar, but a 10-30 times lower uptake across most fatty acids. (13)C-bicarbonate uptake, signifying the presence of autotrophic communities was only significant at "Bison Pool" and was observed predominantly in non-specific saturated C16, C18, C20, and C22 fatty acids. Incorporation of (13)C-formate occurred only at very low rates at "Bison Pool" and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. (13)C-uptake into archaeal lipids occurred predominantly with (13)C-acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being sustained by autotrophic growth.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。