Impaired Wnt signaling in dopamine containing neurons is associated with pathogenesis in a rotenone triggered Drosophila Parkinson's disease model

含有多巴胺的神经元中 Wnt 信号受损与鱼藤酮引发的果蝇帕金森病模型的发病机制有关

阅读:16
作者:Flora Stephano, Stella Nolte, Julia Hoffmann, Samar El-Kholy, Jakob von Frieling, Iris Bruchhaus, Christine Fink, Thomas Roeder

Abstract

Parkinson's disease, which is the one of the most common neurodegenerative movement disorder, is characterized by a progressive loss of dopamine containing neurons. The mechanisms underlying disease initiation and development are not well understood and causative therapies are currently not available. To elucidate the molecular processes during early stages of Parkinson's disease, we utilized a Drosophila model. To induce Parkinson's disease-like phenotypes, we treated flies with the pesticide rotenone and isolated dopamine producing neurons of animals that were at an early disease stage. Transcriptomic analyses revealed that gene ontologies associated with regulation of cell death and neuronal functions were significantly enriched. Moreover, the activities of the MAPK/EGFR- and TGF-β signaling pathways were enhanced, while the Wnt pathway was dampened. In order to evaluate the role of Wnt signaling for survival of dopaminergic neurons in the disease model, we rescued the reduced Wnt signaling activity by ectopic overexpression of armadillo/β-catenin. This intervention rescued the rotenone induced movement impairments in the Drosophila model. Taken together, this initial study showed a highly relevant role of Wnt signaling for dopamine producing neurons during pathogenesis in Parkinson's disease and it implies that interfering with this pathway might by a suitable therapeutic option for the future.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。