Reciprocal inhibition of NOTCH and SOX2 shapes tumor cell plasticity and therapeutic escape in triple-negative breast cancer

NOTCH 和 SOX2 的相互抑制塑造了三阴性乳腺癌中肿瘤细胞的可塑性和治疗逃逸

阅读:5
作者:Morgane Fournier #, Joaquim Javary #, Vincent Roh, Nadine Fournier, Freddy Radtke

Abstract

Cancer cell plasticity contributes significantly to the failure of chemo- and targeted therapies in triple-negative breast cancer (TNBC). Molecular mechanisms of therapy-induced tumor cell plasticity and associated resistance are largely unknown. Using a genome-wide CRISPR-Cas9 screen, we investigated escape mechanisms of NOTCH-driven TNBC treated with a gamma-secretase inhibitor (GSI) and identified SOX2 as a target of resistance to Notch inhibition. We describe a novel reciprocal inhibitory feedback mechanism between Notch signaling and SOX2. Specifically, Notch signaling inhibits SOX2 expression through its target genes of the HEY family, and SOX2 inhibits Notch signaling through direct interaction with RBPJ. This mechanism shapes divergent cell states with NOTCH positive TNBC being more epithelial-like, while SOX2 expression correlates with epithelial-mesenchymal transition, induces cancer stem cell features and GSI resistance. To counteract monotherapy-induced tumor relapse, we assessed GSI-paclitaxel and dasatinib-paclitaxel combination treatments in NOTCH inhibitor-sensitive and -resistant TNBC xenotransplants, respectively. These distinct preventive combinations and second-line treatment option dependent on NOTCH1 and SOX2 expression in TNBC are able to induce tumor growth control and reduce metastatic burden.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。