Exploring the mechanism of Schisandra rubriflora in the treatment of polycystic ovary syndrome based on network pharmacology and molecular docking

基于网络药理学与分子对接探讨红花五味子治疗多囊卵巢综合征的作用机制

阅读:6
作者:Zhengyan Dou, Qingxian Li, Jing Zhang, Xin Zhang

Background

Polycystic ovary syndrome (PCOS) is an endocrine disease associated with reproductive and metabolic abnormalities. The

Conclusion

PTGS2, MMP9, MCL1 and JUN are potential targets for S. rubriflora to treat PCOS. Schisandrin, a main component of S. rubriflora, may be a candidate for the treatment of PCOS.

Methods

HERB database and SwissTargetPrediction database were used to obtain the active components and the targets of S. rubriflora. Differentially expressed genes (DEGs) associated with PCOS were obtained by analyzing GSE54248 dataset. A protein-protein interaction network was constructed, and topological analyses were performed to identify the hub targets and main bioactive components. The binding abilities between hub targets and key components were studied by molecular docking. Finally, in vitro PCOS models were constructed with KGN cells and rat ovarian granulosa cells, respectively, and the regulatory effects of schisandrin, a key bioactive component of S. rubriflora, on the cells were investigated by in vitro assays.

Results

A total of 14 bioactive ingredients of S. rubriflora and 26 potential therapeutic targets of S. rubriflora in PCOS treatment were obtained. Bioinformatics analyses suggested that the mechanisms of S. rubriflora in treating PCOS were related to IL-17 signaling pathway and TNF signaling pathway. The binding affinities between key components of S. rubriflora (schisandrin, wyerone, and rugosal) and hub targets (PTGS2, MMP9, MCL1, and JUN) were high. Schisandrin could attenuate lipopolysaccharide-induced inflammation, oxidative stress, and apoptosis of KGN cells and rat ovarian granulosa cells, as well as inhibit hub target expression and TNF pathway activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。