ATF4-dependent oxidative induction of the DNA repair enzyme Ape1 counteracts arsenite cytotoxicity and suppresses arsenite-mediated mutagenesis

ATF4 依赖的 DNA 修复酶 Ape1 氧化诱导可抵消亚砷酸盐的细胞毒性并抑制亚砷酸盐介导的诱变

阅读:6
作者:Hua Fung, Pingfang Liu, Bruce Demple

Abstract

Arsenite is a human carcinogen causing skin, bladder, and lung tumors, but the cellular mechanisms underlying these effects remain unclear. We investigated expression of the essential base excision DNA repair enzyme apurinic endonuclease 1 (Ape1) in response to sodium arsenite. In mouse 10T(1/2) fibroblasts, Ape1 induction in response to arsenite occurred about equally at the mRNA, protein, and enzyme activity levels. Analysis of the APE1 promoter region revealed an AP-1/CREB binding site essential for arsenite-induced transcriptional activation in both mouse and human cells. Electrophoretic mobility shift assays indicated that an ATF4/c-Jun heterodimer was the responsible transcription factor. RNA interference targeting c-Jun or ATF4 eliminated arsenite-induced APE1 transcription. Suppression of Ape1 or ATF4 sensitized both mouse fibroblasts (10T(1/2)) and human lymphoblastoid cells (TK6) to arsenite cytotoxicity. Expression of Ape1 from a transgene did not efficiently restore arsenite resistance in ATF4-depleted cells but did offset initial accumulation of abasic DNA damage following arsenite treatment. Mutagenesis by arsenite (at the TK and HPRT loci in TK6 cells) was observed only for ATF4-depleted cells, which was strongly offset by Ape1 expression from a transgene. Therefore, the ATF4-mediated up-regulation of Ape1 and other genes plays a key role against arsenite-mediated toxicity and mutagenesis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。