The impact of inflammatory and oxidative stress biomarkers on the sympathetic nervous system in severe coronary atherosclerosis

炎症和氧化应激生物标志物对严重冠状动脉粥样硬化交感神经系统的影响

阅读:5
作者:Alexandra Maria Boieriu, Cezar Dumitrel Luca, Carmen Daniela Neculoiu, Diana Ţînţ

Conclusion

In patients with CAD referred for CABG, SNS activation, indicated by plasma NE levels, was correlated with disease severity as assessed by the SYNTAX I score, as well as with markers of inflammation and oxidative stress. This suggests that inflammation, oxidative stress, and SNS activation form an interconnected network, with each component influencing the others. It might be of interest to develop a scoring system including inflammation and oxidative stress markers to identify patients that require a more aggressive approach to lower inflammation, oxidative stress and modulate the sympathetic nervous system. This could be of use especially in the setting of a scheduled intervention -such as CABG surgery.

Methods

Adult patients with severe CAD scheduled for coronary artery bypass graft (CABG) surgery were enrolled. SYNTAX I score was calculated based on coronary angiography. Systemic activation of the SNS was estimated through circulating levels of norepinephrine (NE). Plasma levels of pro-inflammatory cytokines (IL 1β, IL 6 and HIF 1α) and oxidative stress molecules (SOD-1 and LOX-1) were obtained prior to surgery.

Objective

The present study aimed at evaluating the association between sympathetic nervous system activation (SNS) and the severity of coronary artery disease (CAD). In addition, we tested the hypothesis that inflammation and oxidative stress influence the SNS activation.

Results

Circulating NE levels were significantly correlated with the severity of CAD, as assessed by the SYNTAX I score (p 0.002; r 0.329). Elevated levels of circulating pro-inflammatory markers were significantly correlated with increased NE concentrations (for IL-1β: p < 0.001, r = 0.49; for IL-6 and NE: p = 0.003, r = 0.32; for HIF-1α and NE: p = 0.049, r = 0.21). Additionally, oxidative stress molecules were associated with circulating NE levels (for SOD-1 and NE: p = 0.016, r = 0.26; for LOX-1 and NE: p = 0.004, r = 0.31).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。