Novel transcriptional regulatory signals in the adeno-associated virus terminal repeat A/D junction element

腺相关病毒末端重复 A/D 连接元件中的新型转录调控信号

阅读:4
作者:R P Haberman, T J McCown, R J Samulski

Abstract

Adeno-associated virus (AAV) type 2 vectors transfer stable, long-term gene expression to diverse cell types in vivo. Many gene therapy applications require the control of long-term transgene expression, and AAV vectors, similar to other gene transfer systems, are being evaluated for delivery of regulated gene expression cassettes. Previously, we (R. P. Haberman, T. J. McCown, and R. J. Samulski, Gene Ther. 5:1604-1611, 1998) demonstrated the use of the tetracycline-responsive system for long-term regulated expression in rat brains. In that study, we also observed residual expression in the "off" state both in vitro and in vivo, suggesting that the human cytomegalovirus (CMV) major immediate-early minimal promoter or other cis-acting elements (AAV terminal repeats [TR]) were contributing to this activity. In the present study, we identify that the AAV TR, minus the tetracycline-responsive minimal CMV promoter, will initiate mRNA expression from vector templates. Using deletion analysis and specific PCR-derived TR reporter gene templates, we mapped this activity to a 37-nucleotide stretch in the A/D elements of the TR. Although the mRNA derived from the TR is generated from a non-TATA box element, the use of mutant templates failed to identify function of canonical initiator sequences as previously described. Finally, we demonstrated the presence of green fluorescent protein expression both in vitro and in vivo in brain by using recombinant virus carrying only the TR element. Since the AAV terminal repeat is a necessary component of all recombinant AAV vectors, this TR transcriptional activity may interfere with all regulated expression cassettes and may be a problem in the development of novel TR split gene vectors currently being considered for genes too large to be packaged.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。