RNF149 confers cisplatin resistance in esophageal squamous cell carcinoma via destabilization of PHLPP2 and activating PI3K/AKT signalling

RNF149 通过破坏 PHLPP2 并激活 PI3K/AKT 信号传导导致食管鳞状细胞癌产生顺铂耐药性

阅读:5
作者:Jinrong Zhu #, Jiuren Tang #, Yongqi Wu #, Xiangyu Qiu, Xin Jin, Rongxin Zhang

Abstract

Chemo-resistance has been identified as a crucial factor contributing to tumor recurrence and a leading cause of worse prognosis in patients with ESCC. Therefore, unravel the critical regulators and effective strategies to overcome drug resistance will have a significant clinical impact on the disease. In our study we found that RNF149 was upregulated in ESCC and high RNF149 expression was associated with poor prognosis with ESCC patients. Functionally, we have demonstrated that overexpression of RNF149 confers CDDP resistance to ESCC; however, inhibition of RNF149 reversed this phenomenon both in vitro and in vivo. Mechanistically, we demonstrated that RNF149 interacts with PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2) and induces E3 ligase-dependent protein degradation of PHLPP2, substantially activating the PI3K/AKT signalling pathway in ESCC. Additionally, we found that inhibition of PI3K/AKT signalling pathway by AKT siRNA or small molecule inhibitor significantly suppressed RNF149-induced CDDP resistance. Importantly, RNF149 locus was also found to be amplified not only in ESCC but also in various human cancer types. Our data suggest that RNF149 might function as an oncogenic gene. Targeting the RNF149/PHLPP2/PI3K/Akt axis may be a promising prognostic factor and valuable therapeutic target for malignant tumours.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。