Investigating the critical characteristics of thermal runaway process for LiFePO4/graphite batteries by a ceased segmented method

分段式停堆法研究磷酸铁锂/石墨电池热失控过程临界特性

阅读:6
作者:Xuan Tang, Guangxu Zhang, Xueyuan Wang, Gang Wei, Guangshuai Han, Jiangong Zhu, Xuezhe Wei, Haifeng Dai

Abstract

Lithium-ion batteries (LIBs) are widely used as the energy carrier in our daily life. However, the higher energy density of LIBs results in poor safety performance. Thermal runaway (TR) is the critical problem which hinders the further application of LIBs. Clarifying the mechanism of TR evolution is beneficial to safer cell design and safety management. In this paper, liquid nitrogen spray is proved to be an effective way to stop the violent reaction of LIBs during the TR process. Based on extended-volume accelerating rate calorimetry, the liquid nitrogen ceasing combined with non-atmospheric exposure analysis is used to investigate the TR evolution about LiFePO4/graphite batteries at critical temperature. Specifically, the geometrical shape, voltage, and impedance change are monitored during the TR process on the cell level. The morphologies/constitution of electrodes and separators are presented on the component level. Utilizing the gas analysis, the failure mechanism of the prismatic LiFePO4/graphite battery is studied comprehensively.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。