Different Concentrations of Lactobacillus acidophilus Cell Free Filtrate Have Differing Anti-Biofilm and Immunomodulatory Effects

不同浓度的嗜酸乳杆菌无细胞滤液具有不同的抗生物膜和免疫调节作用

阅读:7
作者:Rachael M Wilson, Jean M Walker, Kingsley Yin

Abstract

Probiotics such as various strains of Lactobacillaceae have been shown to have antimicrobial and immunomodulatory activity. In vitro studies have shown that Lactobacilli can decrease bacterial biofilm formation. Effects on immune cells have been unclear with most studies showing anti-inflammatory activity. The mechanism of effects has not been clearly elucidated. In these studies, we used different concentrations of live Lactobacillus acidophilus as well as cell free filtrate (CFF) derived from different concentrations of bacteria. Use of CFF is advantageous as a therapeutic because in vivo it can directly contact immune cells and its concentration is fixed. Both live cells and CFF inhibited Pseudomonas aeruginosa biofilm formation. Importantly, we show that high concentration CFF destroyed mature biofilm. This activity was not due to a lowered pH per se, as pH matched HCl did not remove mature biofilm. High concentration CFF totally inhibited P. aeruginosa growth and was bactericidal (>99.99%), but low concentration CFF was not bactericidal. To examine the immunomodulatory effects of L. acidophilus, we incubated THP-1 monocytes and derived macrophages with CFF and measured TNFα production. CFF did not significantly increase TNFα production in THP-1 monocytes. When cells were prestimulated with LPS, high concentration CFF increased TNFα production even further. In macrophages, high concentration CFF alone increased TNFα production but did not affect LPS prestimulated cells. In contrast, low concentration CFF decreased TNFα production in LPS prestimulated cells. To elucidate the possible mechanisms for these effects, we repeated the experiments using a NF-κB reporter THP-1 cell line. High concentration CFF increased NF-κB activity in monocytes and macrophages. In LPS prestimulated macrophages, only low concentration CFF reduced NF-κB activity. These results suggest that high concentration CFF alone induced NF-κB expression which could account partially for an increase in TNFα production. On the other hand, in macrophages, the lower non-bactericidal concentration of CFF reduced NF-κB expression and decreased TNFα production after LPS prestimulation. Taken together, the results provide evidence that different concentrations of L. acidophilus CFF possess varying bactericidal, anti-biofilm and immunomodulatory effects. This is important in vivo to evaluate the possible use of L. acidophilus CFF in different conditions.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。