Renovascular Hypertension Induces Myocardial Mitochondrial Damage, Contributing to Cardiac Injury and Dysfunction in Pigs With Metabolic Syndrome

肾血管性高血压引起心肌线粒体损伤,导致代谢综合征猪的心脏损伤和功能障碍

阅读:7
作者:Arash Aghajani Nargesi, Mohamed C Farah, Xiang-Yang Zhu, Lei Zhang, Hui Tang, Kyra L Jordan, Ishran M Saadiq, Amir Lerman, Lilach O Lerman, Alfonso Eirin

Background

Renovascular hypertension (RVH) often manifest with metabolic syndrome (MetS) as well. Coexisting MetS and hypertension increases cardiovascular morbidity and mortality, but the mechanisms underlying cardiac injury remain unknown. We hypothesized that superimposition of MetS induces myocardial mitochondrial damage, leading to cardiac injury and dysfunction in swine RVH.

Conclusions

MetS+RVH induces myocardial mitochondrial damage and dysfunction. MetS + RVH failed to activate mitophagy, resulting in greater cardiac remodeling, fibrosis, and diastolic dysfunction. Mitochondrial injury and impaired mitophagy may constitute important mechanisms and therapeutic targets to ameliorate cardiac damage and dysfunction in patients with coexisting MetS and RVH.

Methods

Pigs were studied after 16 weeks of diet-induced MetS with or without RVH (unilateral renal artery stenosis), and Lean controls (n = 6 each). Systolic and diastolic cardiac function were assessed by multidetector CT, and cardiac mitochondrial morphology (electron microscopy) and myocardial function in tissue and isolated mitochondria.

Results

Body weight was similarly higher in MetS groups vs. Lean. RVH groups achieved significant stenosis and developed hypertension. Mitochondrial matrix density and adenosine triphosphate production were lower and H2O2 production higher in RVH groups vs. Lean and MetS. Lean + RVH (but not MetS + RVH) activated mitophagy, which was associated with decreased myocardial expression of mitophagy-related microRNAs. MetS groups exhibited higher numbers of intermitochondrial junctions, which could have prevented membrane depolarization/activation of mitophagy in MetS + RVH. Cardiac fibrosis, hypertrophy (increased left ventricular muscle mass), and diastolic function (decreased E/A ratio) were greater in MetS + RVH vs. Lean + RVH. Conclusions: MetS+RVH induces myocardial mitochondrial damage and dysfunction. MetS + RVH failed to activate mitophagy, resulting in greater cardiac remodeling, fibrosis, and diastolic dysfunction. Mitochondrial injury and impaired mitophagy may constitute important mechanisms and therapeutic targets to ameliorate cardiac damage and dysfunction in patients with coexisting MetS and RVH.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。