Lysyl Oxidase Is a Key Player in BRAF/MAPK Pathway-Driven Thyroid Cancer Aggressiveness

赖氨酰氧化酶是 BRAF/MAPK 通路驱动的甲状腺癌侵袭性的关键因素

阅读:10
作者:Myriem Boufraqech, Dhaval Patel, Naris Nilubol, Astin Powers, Timothy King, Jasmine Shell, Justin Lack, Lisa Zhang, Sudheer Kumar Gara, Viswanath Gunda, Joanna Klubo-Gwiezdzinska, Suresh Kumar, James Fagin, Jeffrey Knauf, Sareh Parangi, David Venzon, Martha Quezado, Electron Kebebew

Background

The BRAFV600E mutation is the most common somatic mutation in thyroid cancer. The mechanism associated with BRAF-mutant tumor aggressiveness remains unclear. Lysyl oxidase (LOX) is highly expressed in aggressive thyroid cancers, and involved in cancer metastasis. The

Conclusions

The data suggest that BRAFV600E tumors with high LOX expression are associated with more aggressive disease. The biological underpinnings of the clinical findings were confirmed by showing that BRAF and the MAPK pathway regulate LOX expression.

Methods

The prognostic value of LOX and its association with mutated BRAF was analyzed in The Cancer Genome Atlas and an independent cohort. Inhibition of mutant BRAF and the MAPK pathway, and overexpression of mutant BRAF and mouse models of BRAFV600E were used to test the effect on LOX expression.

Results

In The Cancer Genome Atlas cohort, LOX expression was higher in BRAF-mutant tumors compared to wild-type tumors (p < 0.0001). Patients with BRAF-mutant tumors with high LOX expression had a shorter disease-free survival (p = 0.03) compared to patients with a BRAF mutation and the low LOX group. In the independent cohort, a significant positive correlation between LOX and percentage of BRAF mutated cells was found. The independent cohort confirmed high LOX expression to be associated with a shorter disease-free survival (p = 0.01). Inhibition of BRAFV600E and MEK decreased LOX expression. Conversely, overexpression of mutant BRAF increased LOX expression. The mice with thyroid-specific expression of BRAFV600E showed strong LOX and p-ERK expression in tumor tissue. Inhibition of BRAFV600E in transgenic and orthotopic mouse models significantly reduced the tumor burden as well as LOX and p-ERK expression. Conclusions: The data suggest that BRAFV600E tumors with high LOX expression are associated with more aggressive disease. The biological underpinnings of the clinical findings were confirmed by showing that BRAF and the MAPK pathway regulate LOX expression.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。