Lysyl Oxidase Is a Key Player in BRAF/MAPK Pathway-Driven Thyroid Cancer Aggressiveness

赖氨酰氧化酶是 BRAF/MAPK 通路驱动的甲状腺癌侵袭性的关键因素

阅读:16
作者:Myriem Boufraqech, Dhaval Patel, Naris Nilubol, Astin Powers, Timothy King, Jasmine Shell, Justin Lack, Lisa Zhang, Sudheer Kumar Gara, Viswanath Gunda, Joanna Klubo-Gwiezdzinska, Suresh Kumar, James Fagin, Jeffrey Knauf, Sareh Parangi, David Venzon, Martha Quezado, Electron Kebebew

Background

The BRAFV600E mutation is the most common somatic mutation in thyroid cancer. The mechanism associated with BRAF-mutant tumor aggressiveness remains unclear. Lysyl oxidase (LOX) is highly expressed in aggressive thyroid cancers, and involved in cancer metastasis. The

Conclusions

The data suggest that BRAFV600E tumors with high LOX expression are associated with more aggressive disease. The biological underpinnings of the clinical findings were confirmed by showing that BRAF and the MAPK pathway regulate LOX expression.

Methods

The prognostic value of LOX and its association with mutated BRAF was analyzed in The Cancer Genome Atlas and an independent cohort. Inhibition of mutant BRAF and the MAPK pathway, and overexpression of mutant BRAF and mouse models of BRAFV600E were used to test the effect on LOX expression.

Results

In The Cancer Genome Atlas cohort, LOX expression was higher in BRAF-mutant tumors compared to wild-type tumors (p < 0.0001). Patients with BRAF-mutant tumors with high LOX expression had a shorter disease-free survival (p = 0.03) compared to patients with a BRAF mutation and the low LOX group. In the independent cohort, a significant positive correlation between LOX and percentage of BRAF mutated cells was found. The independent cohort confirmed high LOX expression to be associated with a shorter disease-free survival (p = 0.01). Inhibition of BRAFV600E and MEK decreased LOX expression. Conversely, overexpression of mutant BRAF increased LOX expression. The mice with thyroid-specific expression of BRAFV600E showed strong LOX and p-ERK expression in tumor tissue. Inhibition of BRAFV600E in transgenic and orthotopic mouse models significantly reduced the tumor burden as well as LOX and p-ERK expression. Conclusions: The data suggest that BRAFV600E tumors with high LOX expression are associated with more aggressive disease. The biological underpinnings of the clinical findings were confirmed by showing that BRAF and the MAPK pathway regulate LOX expression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。