Spatiotemporal Uncoupling of MicroRNA-Mediated Translational Repression and Target RNA Degradation Controls MicroRNP Recycling in Mammalian Cells

MicroRNA 介导的翻译抑制与靶 RNA 降解的时空解偶联控制哺乳动物细胞中的 MicroRNP 循环

阅读:6
作者:Mainak Bose, Bahnisikha Barman, Avijit Goswami, Suvendra N Bhattacharyya

Abstract

MicroRNA (miRNA)-mediated repression controls expression of more than half of protein-coding genes in metazoan animals. Translation repression is associated with target mRNA degradation initiated by decapping and deadenylation of the repressed mRNAs. Earlier evidence suggests the endoplasmic reticulum (ER) as the site where microRNPs (miRNPs) interact with their targets before translation repression sets in, but the subcellular location of subsequent degradation of miRNA-repressed messages is largely unidentified. Here, we explore the subcellular distribution of essential components of degradation machineries of miRNA-targeted mRNAs. We have noted that interaction of target mRNAs with AGO2 protein on the ER precedes the relocalization of repressed messages to multivesicular bodies (MVBs). The repressed messages subsequently get deadenylated, lose their interaction with AGO2, and become decapped. Blocking maturation of endosomes to late endosome and MVBs by targeting the endosomal protein HRS uncouples miRNA-mediated translation repression from target RNA degradation. HRS is also targeted by the intracellular parasite Leishmania donovani, which curtails the HRS level in infected cells to prevent uncoupling of mRNA-AGO2 interaction, preventing degradation of translationally repressed messages, and thus stops recycling of miRNPs preengaged in repression.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。