(-)- Gossypol Inhibition of Musashi-Mediated Forgetting Improves Memory and Age-Dependent Memory Decline in Caenorhabditis elegans

(-)-棉酚抑制武藏介导的遗忘可改善秀丽隐杆线虫的记忆力和年龄依赖性的记忆力衰退

阅读:5
作者:Pavlina Mastrandreas, Andreas Arnold, Csaba Boglari, Dominique J-F de Quervain, Attila Stetak, Andreas Papassotiropoulos2

Abstract

Musashi RNA-binding proteins (MSIs) retain a pivotal role in stem cell maintenance, tumorigenesis, and nervous system development. Recently, we showed in C. elegans that Musashi (MSI-1) actively promotes forgetting upon associative learning via a 3'UTR-dependent translational expression of the Arp2/3 actin branching complex. Here, we investigated the evolutionary conserved role of MSI proteins and the effect of their pharmacological inhibition on memory. Expression of human Musashi 1 (MSI1) and Musashi 2 (MSI2) under the endogenous Musashi promoter fully rescued the phenotype of msi-1(lf) worms. Furthermore, pharmacological inhibition of human MSI1 and MSI2 activity using (-)- gossypol resulted in improved memory retention, without causing locomotor, chemotactic, or learning deficits. No drug effect was observed in msi-1(lf) treated worms. Using Western blotting and confocal microscopy, we found no changes in MSI-1 protein abundance following (-)- gossypol treatment, suggesting that Musashi gene expression remains unaltered and that the compound exerts its inhibitory effect post-translationally. Additionally, (-)- gossypol suppressed the previously seen rescue of the msi-1(lf) phenotype in worms expressing human MSI1 specifically in the AVA neuron, indicating that (-)- gossypol can regulate the Musashi pathway in a memory-related neuronal circuit in worms. Finally, treating aged worms with (-)- gossypol reversed physiological age-dependent memory decline. Taken together, our findings indicate that pharmacological inhibition of Musashi might represent a promising approach for memory modulation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。