Effects of spectral transmittance through standard laboratory cages on circadian metabolism and physiology in nude rats

标准实验室笼具的光谱透射对裸鼠昼夜代谢和生理的影响

阅读:5
作者:Robert T Dauchy, Erin M Dauchy, John P Hanifin, Sheena L Gauthreaux, Lulu Mao, Victoria P Belancio, Tara G Ooms, Lynell M Dupepe, Michael R Jablonski, Benjamin Warfield, Melissa A Wren, George C Brainard, Steven M Hill, David E Blask

Abstract

Light is potent in circadian, neuroendocrine, and neurobehavioral regulation, thereby having profound influence on the health and wellbeing of all mammals, including laboratory animals. We hypothesized that the spectral quality of light transmitted through colored compared with clear standard rodent cages alters circadian production of melatonin and temporal coordination of normal metabolic and physiologic activities. Female nude rats (Hsd:RH-Foxn1(rnu); n = 6 per group) were maintained on a 12:12-h light:dark regimen (300 lx; lights on, 0600) in standard translucent clear, amber, or blue rodent cages; intensity and duration of lighting were identical for all groups. Rats were assessed for arterial blood levels of pO(2) and pCO(2), melatonin, total fatty acid, glucose, lactic acid, insulin, leptin, and corticosterone concentrations at 6 circadian time points. Normal circadian rhythms of arterial blood pO(2) and pCO(2) were different in rats housed in cages that were blue compared with amber or clear. Plasma melatonin levels (mean ± 1 SD) were low (1.0 ± 0.2 pg/mL) during the light phase in all groups but higher at nighttime in rats in blue cages (928.2 ± 39.5 pg/mL) compared with amber (256.8 ± 6.6 pg/mL) and clear (154.8 ± 9.3 pg/mL) cages. Plasma daily rhythms of total fatty acid, glucose, lactic acid, leptin, insulin, and corticosterone were disrupted in rats housed in blue or amber compared with clear cages. Temporal coordination of circadian rhythms of physiology and metabolism can be altered markedly by changes in the spectral quality of light transmitted through colored standard rodent cages.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。