Suppression of reactive oxygen species generation in heart mitochondria from anoxic turtles: the role of complex I S-nitrosation

抑制缺氧龟心脏线粒体中活性氧的产生:复合物I S-亚硝化的作用

阅读:6
作者:Amanda Bundgaard, Andrew M James, William Joyce, Michael P Murphy, Angela Fago

Abstract

Freshwater turtles (Trachemys scripta) are among the very few vertebrates capable of tolerating severe hypoxia and re-oxygenation without suffering from damage to the heart. As myocardial ischemia and reperfusion causes a burst of mitochondrial reactive oxygen species (ROS) in mammals, the question arises as to whether, and if so how, this ROS burst is prevented in the turtle heart. We find that heart mitochondria isolated from turtles acclimated to anoxia produce less ROS than mitochondria from normoxic turtles when consuming succinate. As succinate accumulates in the hypoxic heart and is oxidized when oxygen returns, this suggests an adaptation to lessen ROS production. Specific S-nitrosation of complex I can lower ROS in mammals and here we show that turtle complex I activity and ROS production can also be strongly depressed in vitro by S-nitrosation. We detect in vivo endogenous S-nitrosated complex I in turtle heart mitochondria, but these levels are unaffected upon anoxia acclimation. Thus, while heart mitochondria from anoxia-acclimated turtles generate less ROS and have a lower aerobic capacity than those from normoxic turtles, this is not due to decreases in complex I activity or expression levels. Interestingly, in-gel activity staining reveals that most complex I of heart mitochondria from normoxic and anoxic turtles forms stable super-complexes with other respiratory enzymes and, in contrast to mammals, these are not disrupted by dodecyl maltoside. Taken together, these results show that although S-nitrosation of complex I is a potent mechanism to prevent ROS formation upon re-oxygenation after anoxia in vitro, this is not a major cause of the suppression of ROS production by anoxic turtle heart mitochondria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。