Regulatory dynamics of Sch9 in response to cytosolic acidification: From spatial reconfiguration to cellular adaptation to stresses

Sch9 对细胞质酸化的调节动力学:从空间重构到细胞对压力的适应

阅读:9
作者:Rui Fujii, Rai Katsukawa, Eigo Takeda, Eisuke Itakura, Akira Matsuura

Abstract

The regulation of cellular metabolism is crucial for cell survival, with Sch9 in Saccharomyces cerevisiae serving a key role as a substrate of TORC1. Sch9 localizes to the vacuolar membrane through binding to PI(3,5)P2, which is necessary for TORC1-dependent phosphorylation. This study demonstrates that cytosolic pH regulates Sch9 localization. Under stress conditions that induce cytosolic acidification, Sch9 detached from the vacuolar membrane. In vitro experiments confirmed that Sch9's affinity for PI(3,5)P2 is pH-dependent. This pH-dependent localization switch is essential for regulating the TORC1-Sch9 pathway. Impairment of the dissociation of Sch9 from the vacuolar membrane in response to cytosolic acidification resulted in the deficient induction of stress response gene expression and delayed the adaptive response to acetic acid stress. These findings indicate the importance of proper Sch9 localization for metabolic reprogramming and stress response in yeast cells.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。