Abstract
The immunomodulatory and self-renewable features of human adipose-derived mesenchymal stem cells (hAD-MSCs) mark their importance in regenerative medicine. Interleukin (IL)-23 as a proinflammatory cytokine suppresses T regulatory cells and promotes the response of T helper 17 and T helper 1 cells. This pathway initiates inflammation and immunosuppression in several autoimmune diseases. The current study aimed at producing recombinant IL-23 decoy receptor (RIL-23R) using hAD-MSCs as a good candidate for ex vivo cell-based gene therapy purposes to reduce inflammation in autoimmune diseases. hAD-MSCs was isolated from lipoaspirate and then characterized by differentiation. RIL-23R was designed and cloned into a pCDH813A-1 lentiviral vector. The transduction of hAD-MSCs was performed at multiplicity of infection = 50 with pCDH-EFI α-RIL-23R-PGK copGFP. Expressions of RIL-23R and octamer-binding transcription factor 4 (OCT-4) were determined by real-time polymerase chain reaction. Self-renewing properties were assayed with OCT-4. Bioactivity of the designed RIL-23R was evaluated by IL-17 and IL-10 expression of mouse splenocytes. The results showed that the transducted hAD-MSCs/RIL-23R, expressing IL-23 decoy receptor, can provide a useful approach for a basic research on cell-based gene therapy for autoimmune disorders.
