Ocean acidification conditions increase resilience of marine diatoms

海洋酸化条件增强了海洋硅藻的恢复力

阅读:5
作者:Jacob J Valenzuela, Adrián López García de Lomana, Allison Lee, E V Armbrust, Mónica V Orellana, Nitin S Baliga

Abstract

The fate of diatoms in future acidified oceans could have dramatic implications on marine ecosystems, because they account for ~40% of marine primary production. Here, we quantify resilience of Thalassiosira pseudonana in mid-20th century (300 ppm CO2) and future (1000 ppm CO2) conditions that cause ocean acidification, using a stress test that probes its ability to recover from incrementally higher amount of low-dose ultraviolet A (UVA) and B (UVB) radiation and re-initiate growth in day-night cycles, limited by nitrogen. While all cultures eventually collapse, those growing at 300 ppm CO2 succumb sooner. The underlying mechanism for collapse appears to be a system failure resulting from "loss of relational resilience," that is, inability to adopt physiological states matched to N-availability and phase of the diurnal cycle. Importantly, under elevated CO2 conditions diatoms sustain relational resilience over a longer timeframe, demonstrating increased resilience to future acidified ocean conditions. This stress test framework can be extended to evaluate and predict how various climate change associated stressors may impact microbial community resilience.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。