A comprehensive platform for analyzing longitudinal multi-omics data

一个用于分析纵向多组学数据的综合平台

阅读:3
作者:Suhas V Vasaikar ,Adam K Savage ,Qiuyu Gong ,Elliott Swanson ,Aarthi Talla ,Cara Lord ,Alexander T Heubeck ,Julian Reading ,Lucas T Graybuck ,Paul Meijer ,Troy R Torgerson ,Peter J Skene ,Thomas F Bumol ,Xiao-Jun Li

Abstract

Longitudinal bulk and single-cell omics data is increasingly generated for biological and clinical research but is challenging to analyze due to its many intrinsic types of variations. We present PALMO ( https://github.com/aifimmunology/PALMO ), a platform that contains five analytical modules to examine longitudinal bulk and single-cell multi-omics data from multiple perspectives, including decomposition of sources of variations within the data, collection of stable or variable features across timepoints and participants, identification of up- or down-regulated markers across timepoints of individual participants, and investigation on samples of same participants for possible outlier events. We have tested PALMO performance on a complex longitudinal multi-omics dataset of five data modalities on the same samples and six external datasets of diverse background. Both PALMO and our longitudinal multi-omics dataset can be valuable resources to the scientific community.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。