SARS-CoV-2 worldwide replication drives rapid rise and selection of mutations across the viral genome: a time-course study - potential challenge for vaccines and therapies

SARS-CoV-2 全球复制推动病毒基因组突变的快速增加和选择:一项时间进程研究 - 对疫苗和疗法的潜在挑战

阅读:8
作者:Stefanie Weber #, Christina M Ramirez #, Barbara Weiser, Harold Burger, Walter Doerfler

Abstract

Scientists and the public were alarmed at the first large viral variant of SARS-CoV-2 reported in December 2020. We have followed the time course of emerging viral mutants and variants during the SARS-CoV-2 pandemic in ten countries on four continents. We examined > 383,500 complete SARS-CoV-2 nucleotide sequences in GISAID (Global Initiative of Sharing All Influenza Data) with sampling dates extending until April 05, 2021. These sequences originated from ten different countries: United Kingdom, South Africa, Brazil, United States, India, Russia, France, Spain, Germany, and China. Among the 77 to 100 novel mutations, some previously reported mutations waned and some of them increased in prevalence over time. VUI2012/01 (B.1.1.7) and 501Y.V2 (B.1.351), the so-called UK and South Africa variants, respectively, and two variants from Brazil, 484K.V2, now called P.1 and P.2, increased in prevalence. Despite lockdowns, worldwide active replication in genetically and socio-economically diverse populations facilitated selection of new mutations. The data on mutant and variant SARS-CoV-2 strains provided here comprise a global resource for easy access to the myriad mutations and variants detected to date globally. Rapidly evolving new variant and mutant strains might give rise to escape variants, capable of limiting the efficacy of vaccines, therapies, and diagnostic tests.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。