Guar gum as galactomannan source induces dysbiosis and reduces performance in broiler chickens and dietary β-mannanase restores the gut homeostasis

瓜尔胶作为半乳甘露聚糖的来源,会诱发肉鸡的菌群失调,降低其生产性能,而膳食中添加 β-甘露聚糖酶可恢复肠道稳态

阅读:5
作者:Marielen de Souza, Venessa Eeckhaut, Evy Goossens, Richard Ducatelle, Filip Van Nieuwerburgh, Karl Poulsen, Ana Angelita Sampaio Baptista, Ana Paula Frederico Rodrigues Loureiro Bracarense, Filip Van Immerseel

Abstract

Galactomannans are abundant nonstarch polysaccharides in broiler feed ingredients. In broilers, diets with high levels of galactomannans have been associated with innate immune response stimulation, poor zootechnical performance, nutrient and lipid absorption, and excessive digesta viscosity. However, data about its effects on the gut microbiome are scarce. β-Mannanases are enzymes that can hydrolyze β-mannans, resulting in better nutrient utilization. In the current study, we have evaluated the effect of guar gum, a source of galactomannans, supplemented to broiler diets, either with or without β-mannanase supplementation, on the microbiota composition, in an attempt to describe the potential role of the intestinal microbiota in β-mannanase-induced gut health and performance improvements. One-day-old broiler chickens (n = 756) were randomly divided into 3 treatments: control diet, guar gum-supplemented diet (1.7%), or guar gum-supplemented diet + β-mannanase (Hemicell 330 g/ton). The zootechnical performance, gut morphometry, ileal and cecal microbiome, and short-chain fatty acid concentrations were evaluated at different time points. The guar gum supplementation decreased the zootechnical performance, and the β-mannanase supplementation restored performance to control levels. The mannan-rich diet-induced dysbiosis, with marked effects on the cecal microbiota composition. The guar gum-supplemented diet increased the cecal abundance of the genera Lactobacillus, Roseburia, Clostridium sensu stricto 1, and Escherichia-Shigella, and decreased Intestinimonas, Alistipes, Butyricicoccus, and Faecalibacterium. In general, dietary β-mannanase supplementation restored the main microbial shifts induced by guar gum to levels of the control group. In addition, the β-mannanase supplementation reduced cecal isobutyric, isovaleric, valeric acid, and branched-chain fatty acid concentrations as compared to the guar gum-supplemented diet group, suggesting improved protein digestion and reduced cecal protein fermentation. In conclusion, a galactomannan-rich diet impairs zootechnical performance in broilers and results in a diet-induced dysbiosis. β-Mannanase supplementation restored the gut microbiota composition and zootechnical performance to control levels.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。