Integrated Analysis of mRNA and Non-coding RNA Transcriptome in Pepper (Capsicum chinense) Hybrid at Seedling and Flowering Stages

辣椒 (Capsicum chinense) 杂交品种苗期和开花期 mRNA 和非编码 RNA 转录组的综合分析

阅读:5
作者:Huang-Ying Shu, He Zhou, Hai-Ling Mu, Shu-Hua Wu, Yi-Li Jiang, Zhuang Yang, Yuan-Yuan Hao, Jie Zhu, Wen-Long Bao, Shan-Han Cheng, Guo-Peng Zhu, Zhi-Wei Wang

Abstract

Pepper is an important vegetable in the world. In this work, mRNA and ncRNA transcriptome profiles were applied to understand the heterosis effect on the alteration in the gene expression at the seedling and flowering stages between the hybrid and its parents in Capsicum chinense. Our phenotypic data indicated that the hybrid has dominance in leaf area, plant scope, plant height, and fruit-related traits. Kyoto Encyclopedia of Genes and Genomes analysis showed that nine members of the plant hormone signal transduction pathway were upregulated in the seedling and flowering stages of the hybrid, which was supported by weighted gene coexpression network analysis and that BC332_23046 (auxin response factor 8), BC332_18317 (auxin-responsive protein IAA20), BC332_13398 (ethylene-responsive transcription factor), and BC332_27606 (ethylene-responsive transcription factor WIN1) were candidate hub genes, suggesting the important potential role of the plant hormone signal transduction in pepper heterosis. Furthermore, some transcription factor families, including bHLH, MYB, and HSF were greatly over-dominant. We also identified 2,525 long ncRNAs (lncRNAs), 47 micro RNAs (miRNAs), and 71 circle RNAs (circRNAs) in the hybrid. In particular, downregulation of miR156, miR169, and miR369 in the hybrid suggested their relationship with pepper growth vigor. Moreover, we constructed some lncRNA-miRNA-mRNA regulatory networks that showed a multi-dimension to understand the ncRNA relationship with heterosis. These results will provide guidance for a better understanding of the molecular mechanism involved in pepper heterosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。