Regulatory effects of programmed cell death 4 (PDCD4) protein in interferon (IFN)-stimulated gene expression and generation of type I IFN responses

程序性细胞死亡 4 (PDCD4) 蛋白对干扰素 (IFN) 刺激的基因表达和 I 型 IFN 反应产生的调节作用

阅读:14
作者:Barbara Kroczynska, Bhumika Sharma, Elizabeth A Eklund, Eleanor N Fish, Leonidas C Platanias

Abstract

The precise mechanisms by which the activation of interferon (IFN) receptors (IFNRs) ultimately controls mRNA translation of specific target genes to induce IFN-dependent biological responses remain ill defined. We provide evidence that IFN-α induces phosphorylation of programmed cell death 4 (PDCD4) protein on Ser67. This IFN-α-dependent phosphorylation is mediated by either the p70 S6 kinase (S6K) or the p90 ribosomal protein S6K (RSK) in a cell-type-specific manner. IFN-dependent phosphorylation of PDCD4 results in downregulation of PDCD4 protein levels as the phosphorylated form of PDCD4 interacts with the ubiquitin ligase β-TRCP (β-transducin repeat-containing protein) and undergoes degradation. This process facilitates IFN-induced eukaryotic translation initiation factor 4A (eIF4A) activity and binding to translation initiation factor eIF4G to promote mRNA translation. Our data establish that PDCD4 degradation ultimately facilitates expression of several ISG protein products that play important roles in the generation of IFN responses, including IFN-stimulated gene 15 (ISG15), p21(WAF1/CIP1), and Schlafen 5 (SLFN5). Moreover, engagement of the RSK/PDCD4 pathway by the type I IFNR is required for the suppressive effects of IFN-α on normal CD34(+) hematopoietic precursors and for antileukemic effects in vitro. Altogether, these findings provide evidence for a unique function of PDCD4 in the type I IFN system and indicate a key regulatory role for this protein in mRNA translation of ISGs and control of IFN responses.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。