tRNA-Ser-UGA efficiently promotes the rapid release of duck hepatitis A virus from infected enterocytes and its remote dissemination to hepatocytes

tRNA-Ser-UGA 有效促进鸭甲型肝炎病毒从受感染的肠细胞中快速释放并远程传播到肝细胞

阅读:7
作者:Xumin Ou, Yajia Gou, Lizhen Gong, Xiaoming Lin, Yi Liu, Wenwen Yang, Shun Chen, Mafeng Liu, Dekang Zhu, Mingshu Wang, Renyong Jia, Shaqiu Zhang, Ying Wu, Qiao Yang, Bing Tian, Xinxin Zhao, Zhen Wu, Yu He, Anchun Cheng

Abstract

Enterocytes are a necessary portal for fecal-oral transmission of viruses, including duck hepatitis A virus (DHAV), that act on the absorption of amino acids (AAs). We note that the rapid death of ducklings caused by DHAV is likely due to its rapid release from enterocytes. However, the underlying mechanism driving the release of DHAV remains poorly understood. Compared to infected fibroblasts, we found that DHAV-infected enterocytes triggered much more rapid viral release and induced swift and diverse remodeling of the mature tRNAome. Surprisingly, we found that tRNA-Ser-UGA in enterocytes was rapidly and specifically upregulated by DHAV infection and was highly correlated with serine decoding of DHAV, which is enriched with UCA codons. Overexpression of tRNA-Ser-UGA in enterocytes promoted rapid DHAV release, whereas overexpression of the cognate tRNA-Ser-GCU in enterocytes or the same tRNA in fibroblasts did not. In enterocytes, inhibition of serine charging of tRNA-Ser-UGA, transfection of a tRNAm-Ala-UGA backbone mutant or a tRNAm-Ser-UGA>CGA anticodon mutant decreased DHAV release. This finding suggests that tRNA-Ser-UGA plays a prominent role in DHAV release in infected enterocytes, which should be supported by efficient protein translation of the virus. Similarly, tRNA-Ser-UGA potently enhances DHAV protein synthesis, and the inhibition of charging of this tRNA or the transfection of the two mutants decreases DHAV protein synthesis. Phenotypically, the overexpression of tRNA-Ser-UGA in enterocytes further accelerates the spread of DHAV to hepatocytes. In conclusion, we revealed a novel tRNA-Ser-UGA that efficiently promotes the rapid release of DHAV by increasing serine decoding in infected enterocytes, thereby promoting remote cell-to-cell dissemination.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。