A Versatile and Easy Method to Calibrate a Two-Compartment Flow Cell for Differential Electrochemical Mass Spectrometry Measurements

一种用于差分电化学质谱测量的双室流通池校准的通用且简便的方法

阅读:6
作者:Christoph J Bondue, Marc T M Koper, Kristina Tschulik

Abstract

Online techniques for the quantitative analysis of reaction products have many advantages over offline methods. However, owing to the low product formation rates in electrochemical reactions, few of these techniques can be coupled to electrochemistry. An exception is differential electrochemical mass spectrometry (DEMS), which gains increasing popularity not least because of its high time resolution in the sub-second regime. DEMS is often combined with a dual thin-layer cell (a two-compartment flow cell), which helps to mitigate a number of problems that arise due to the existence of a vacuum|electrolyte interface. However, the efficiency with which this cell transfers volatile reaction products into the vacuum of the mass spectrometer is far below 100%. Therefore, a calibration constant that considers not only the sensitivity of the DEMS setup but also the transfer efficiency of the dual thin-layer cell is needed to translate the signals observed in the mass spectrometer into electrochemical product formation rates. However, it can be challenging or impossible to design an experiment that yields such a calibration constant. Here, we show that the transfer efficiency of the dual thin-layer cell depends on the diffusion coefficient of the analyte. Based on this observation, we suggest a two-point calibration method. That is, a plot of the logarithm of the transfer efficiencies determined for H2 and O2 versus the logarithm of their diffusion coefficients defines a straight line. Extrapolation of this line to the diffusion coefficient of another analyte yields a good estimate of its transfer efficiency. This is a versatile and easy calibration method, because the transfer efficiencies of H2 and O2 are readily accessible for a large range of electrode-electrolyte combinations.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。