Exploring the interplay between mechanisms of neuroplasticity and cardiovascular health in aging adults: A multiple linear regression analysis study

探索老年人神经可塑性机制与心血管健康之间的相互作用:多元线性回归分析研究

阅读:13
作者:Danylo F Cabral, Marcelo Bigliassi, Gabriele Cattaneo, Tatjana Rundek, Alvaro Pascual-Leone, Lawrence P Cahalin, Joyce Gomes-Osman

Background

Neuroplasticity and cardiovascular health behavior are critically important factors for optimal brain health.

Conclusions

Our findings build on existing data demonstrating that TMS may provide insight into neuroplasticity and the role cardiovascular health have on its mechanisms. These implications serve as theoretical framework for future longitudinal and interventional studies aiming to improve cardiovascular and brain health. HRR1 is a potential prognostic measure of cardiovascular health and a surrogate marker of brain health in aging adults.

Methods

We included thirty sedentary individuals (age = 60.6 ± 3.8 y; 63 % female). All underwent assessments of neuroplasticity, measured by the change in amplitude of motor evoked potentials elicited by single-pulse Transcranial Magnetic Stimulation (TMS) at baseline and following intermittent Theta-Burst (iTBS) at regular intervals. Cardiovascular health measures were derived from the Incremental Shuttle Walking Test and included Heart Rate Recovery (HRR) at 1-min/2-min after test cessation. We also collected plasma levels of brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), and c-reactive protein.

Objective

To assess the association between the efficacy of the mechanisms of neuroplasticity and metrics of cardiovascular heath in sedentary aging adults.

Results

We revealed moderate but significant relationships between TMS-iTBS neuroplasticity, and the predictors of cardiovascular health (|r| = 0.38 to 0.53, p < .05). HRR1 was the best predictor of neuroplasticity (β = 0.019, p = .002). The best fit model (Likelihood ratio = 5.83, p = .016) of the association between neuroplasticity and HRR1 (β = 0.043, p = .002) was selected when controlling for demographics and health status. VEGF and BDNF plasma levels augmented the association between neuroplasticity and HRR1. Conclusions: Our findings build on existing data demonstrating that TMS may provide insight into neuroplasticity and the role cardiovascular health have on its mechanisms. These implications serve as theoretical framework for future longitudinal and interventional studies aiming to improve cardiovascular and brain health. HRR1 is a potential prognostic measure of cardiovascular health and a surrogate marker of brain health in aging adults.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。