GLIS Rearrangement is a Genomic Hallmark of Hyalinizing Trabecular Tumor of the Thyroid Gland

GLIS 重排是甲状腺透明变性小梁肿瘤的基因组特征

阅读:5
作者:Marina N Nikiforova, Alyaksandr V Nikitski, Federica Panebianco, Cihan Kaya, Linwah Yip, Michelle Williams, Simion I Chiosea, Raja R Seethala, Somak Roy, Vincenzo Condello, Lucas Santana-Santos, Abigail I Wald, Sally E Carty, Robert L Ferris, Adel K El-Naggar, Yuri E Nikiforov

Background

Hyalinizing trabecular tumor (HTT) is a rare thyroid neoplasm with a characteristic trabecular growth pattern and hyalinization. This lesion has been the subject of long-term controversy surrounding its genetic mechanisms, relationship to papillary thyroid carcinoma (PTC), and malignant potential. Due to the presence of nuclear features shared with PTC, HTT frequently contributes to a false-positive cytology, which hampers patient management. The goal of this study was to apply genome-wide sequencing analyses to elucidate the genetic mechanisms of HTT and its relationship to PTC.

Conclusions

This study demonstrates that GLIS rearrangements, particularly PAX8-GLIS3, are highly prevalent in HTT but not in PTC. The fusions lead to overexpression of GLIS, upregulation of extracellular matrix genes, and deposition of collagens, which is a characteristic histopathologic feature of HTT. Due to unique genetic mechanisms and an indolent behavior, it is proposed to rename this tumor as "GLIS-rearranged hyalinizing trabecular adenoma."

Methods

Whole-exome, RNA-Seq, and targeted next-generation sequencing analyses were performed to discover and characterize driver mutations in HTT. RNA-Seq

Results

Using whole-exome and RNA-Seq analyses of the initial three HTT, no known thyroid tumor mutations were identified, while in-frame gene fusion between PAX8 exon 2 and GLIS3 exon 3 was detected in all tumors. Further analysis identified PAX8-GLIS3 in 13/14 (93%) and PAX8-GLIS1 in 1/14 (7%) of HTT confirmed after blind pathology review. The fusions were validated by Sanger sequencing and FISH. The fusions resulted in overexpression of the 3'-portion of GLIS3 and GLIS1 mRNA containing intact DNA-binding domains of these transcription factors and upregulation of extracellular matrix genes including collagen IV. Immunohistochemistry confirmed upregulation and deposition of collagen IV and pan-collagen in HTT. The analysis of 220 PTC revealed no PAX8-GLIS3 and one PAX8-GLIS1 fusion. PAX8-GLIS3 was prospectively identified in 8/10,165 (0.1%) indeterminate cytology fine-needle aspiration samples; 5/5 resected fusion-positive nodules were HTT on surgical pathology. Conclusions: This study demonstrates that GLIS rearrangements, particularly PAX8-GLIS3, are highly prevalent in HTT but not in PTC. The fusions lead to overexpression of GLIS, upregulation of extracellular matrix genes, and deposition of collagens, which is a characteristic histopathologic feature of HTT. Due to unique genetic mechanisms and an indolent behavior, it is proposed to rename this tumor as "GLIS-rearranged hyalinizing trabecular adenoma."

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。