Increasing the ionic conductivity and lithium-ion transport of photo-cross-linked polymer with hexagonal arranged porous film hybrids

用六边形排列的多孔薄膜混合物提高光交联聚合物的离子电导率和锂离子传输

阅读:15
作者:Manjit Singh Grewal, Kazuaki Kisu, Shin-Ichi Orimo, Hiroshi Yabu

Abstract

High ionic conductivity, suitable mechanical strength, and electrochemical stability are the main requirements for high-performance poly(ethylene oxide)-based electrolytes. However, the low ionic conductivity owing to the crystallinity of the ethylene oxide chain that limits the discharge rate and low-temperature performance has restricted the development and commercialization of these electrolytes. Lithium electrolytes that combine high ionic conductivity with a high lithium transference number are rare and are essential for high-power batteries. Here, we report hexagonal arranged porous scaffolds for holding prototype polyethylene glycol-based composite electrolytes containing solvate ionic liquid. The appealing electrochemical and thermal properties indicate their potential as electrolytes for safer rechargeable lithium-ion batteries. The porous scaffolds in the composite electrolytes ensure better electrochemical performance towing to their shortened pores (sizes of 3-14 μm), interconnected pathways, and improved lithium mobility. We demonstrate that both molecular design and porous microstructures are essential for improving performance in polymer electrolytes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。