Murine myeloid-derived suppressor cells are a source of elevated levels of interleukin-27 in early life and compromise control of bacterial infection

小鼠髓系抑制细胞是生命早期白细胞介素-27 水平升高的来源,并损害细菌感染的控制

阅读:6
作者:Madeline Gleave Parson, Juanita Grimmett, Jordan K Vance, Michelle R Witt, Brittany G Seman, Travis W Rawson, Logan Lyda, Christopher Labuda, Joo-Yong Jung, Shelby D Bradford, Cory M Robinson

Abstract

Microbial infections early in life remain a major cause of infant mortality worldwide. This is consistent with immune deficiencies in this population. Interleukin (IL)-27 is suppressive toward a variety of immune cell types, and we have shown that the production of IL-27 is elevated in humans and mice early in life. We hypothesize that elevated levels of IL-27 oppose protective responses to infection during the neonatal period. In this study, we extended previous findings in neonatal mice to identify a population of IL-27 producers that express Gr-1 and were further identified as myeloid-derived suppressor cells (MDSCs) based on the expression of surface markers and functional studies. In neonates, MDSCs are more abundant and contribute to the elevated pool of IL-27 in this population. Although the ability of MDSCs to regulate T lymphocyte activation has been well-studied, sparingly few studies have investigated the influence of MDSCs on innate immune function during bacterial infection. We demonstrate that macrophages are impaired in their ability to control growth of Escherichia coli when cocultured with MDSCs. This bacterium is a significant concern for neonates as a common cause of bacterial sepsis and meningitis. The suppressive effect of MDSCs on macrophage function is mediated by IL-27; inclusion of a reagent to neutralize IL-27 promotes improved control of bacterial growth. Taken together, these results suggest that the increased abundance of MDSCs may contribute to early life susceptibility to infection and further highlight production of IL-27 as a novel MDSC mechanism to suppress immunity.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。